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Abstract

Face detectors and facial landmarks are fundamental to other advanced

tasks, such as face recognition, liveness detection, and face editing. This pa-

per will show how to integrate the two open-source works to build a high-

performance facial landmark detector, the improvements and modifications I

have made for each work. The integrated model can achieve over 24FPS on

iPhone X.

1 Introduction

Nowadays, face-related tasks have commonly been applied in daily life, such

as face recognition, liveness detection, face-related super-resolution, and face edit-

ing. These tasks require face detection and facial landmark as prior knowledge.

Especially, face beauty is the requisite of some customers in real-time video com-

munication. With the highly developed deep learning in computer vision, there are

increasing deep learning based face-related works. To commercialize deep learning re-

lated works, in addition to accuracy, inference speed has become a metric to measure

the practicability.

After an extensive literature review, I found many excellent works in face de-

tection and facial landmark mainly focus on improving test accuracy but ignore the

inference speed, which makes these models hardly be applied in real life. With the

face beauty and face-focused super-resolution during video communication as the

main objective, I modified, enhanced, and integrated two excellent works [2, 5] to

achieve satisfactory accuracy while keeping the high efficiency.

To summaries, my main contributions are:

• Removed tiny face detection branch in RetinaFace-MobileNet-0.25 [2] and tuned

the parameters in anchor boxes setting to increase inference speed about 30%.
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At the same time, the detection accuracy of the normal scale face has almost

not been affected.

• Modified the third-party open-source work [8] of PFLD [5] to improve the land-

mark detection accuracy, and replaced the loss function in PFLD with wing

loss[4] to accelerate training convergence, and improve the overall landmark

detection accuracy. Found the facial parts like eyebrow and contour that are

hard to train after detailed analyzing, boosted the accuracy of these parts while

maintaining the high performance of other parts through penalizing more in

training.

• Augmented training dataset of RetinaFace-MobileNet-0.25 by adding random

rotation[−90
◦
, 90

◦
] to enhance the model robustness. Enhanced integration re-

sult by adding the inference result of RetinaFace-MobileNet-0.25 to the PFLD

training dataset, which can increase the robustness of the integrated model as

well.

• Modified model conversion tools [1] source code to solve the issues during con-

verting.

2 Related Work

2.1 face detection

Single-stage v.s. two-stage: Two-stage [14, 4, 10] models divide face detec-

tion into two stages: the first stage output proposal regions, and the second stage

classify and refine these regions. In general, the two-stage method achieves high loca-

tion accuracy but sacrifices the detection speed. Therefore, two-stage models hardly

reach real-time detection. Meanwhile, there are increasing works focus on single-

stage detection to achieve high detection speed without compromising performance.

single-stage [2, 9, 7, 6, 17] models output the final location coordinate and class prob-

ability without generate proposal regions firstly. Compared with two-stage methods,

the single-stage detections are more efficient and have a higher recall rate but at the

risk of achieving higher false positives and compromising the localization accuracy.

Therefore, there are increasing works [2, 6] focused on single-stage detection try to

improve detection accuracy while keeping efficiency.
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2.2 facial landmark

Heatmap regression model v.s. coordinate regression model: Facial

landmark detection is a regression task, the difficulty of the task can be influenced

by the number of annotation points, and the quality of annotations. Commonly used

dataset 300-W [11] and WFLW [15]are 68 and 98 points annotation, to achieve high

performance on the challenge dataset, a heatmap is added to assist detection. Com-

pared with the coordinate regression models, which are modeled without heatmap,

the heatmap regression models have higher accuracy and are more stable in video fa-

cial landmark detection. However, the additional heatmap branch and the heatmap

input increase the computation costs.

Global v.s. local: Due to the different detection difficulty of facial parts,

the global to local models, like Coarse-toFine CNN, [18] predict the inner points

and contour points separately, then separate the inner points into different parts (eg.

eyebrows, eyes, nose, etc) and refine these parts. The global to local methods enhance

the accuracy of difficult parts like contour and eyebrows but compromise the detection

speed.

3 Methods and Improvements

3.1 Face Detection

The emphasis of the literature review has been focused on one-stage methods.

I try to find a base model with excellent detection accuracy while maintaining high

detection speed due to this task’s objective. RetinaFace [2] adopts a multi-task learn-

ing strategy to simultaneously predict face score, face box, five facial landmarks, and

3D position and correspondence of each facial pixel. I will introduce the key design

points of RetinaFace to provide essential background information in the following

improvement work.

3.1.1 Model Architecture

The overall model can be divided into two parts: (1) encoder-decoder (2) context

module. Encoder-decoder extracts semantic information while keeping image features

during upsampling, and the context module captures tiny faces by implementing

multiple 3× 3 convolution layers to enlarge receptive field.
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Figure 1: RetinaFace Model Architecture

Figure 2: SSH context module

The anchor box design employs multi-scale settings to ensure multi-scale faces

can be captured by the model, which corresponds to the feature pyramid encoder-

decoder. Specifically, the anchor settings are scale-specific, for example, the stride-32

branch corresponds to 32 × 32 receptive filed in the input image to detect the large

or medium faces, and the stride-4 branch is designed to capture tiny faces by tilling

small anchors at the cost of more computational time and at the risk of more false

positives.

Feature Pyramid Stride Anchor

P2 (160 × 160 × 256) 4 16, 20.16, 25.40

P3 (80 × 80 × 256) 8 32, 40.32, 50.80

P4 (40 × 40 × 256) 16 64, 80.63, 101.59

P5 (20 × 20 × 256) 32 128, 161.26, 203.19

P6 (10 × 10 × 256) 64 256, 322.54, 406.37

Table 1: The details of the feature pyramid, stride size, anchor in RetinaFace. For a

640× 640 input image, there are 102,300 anchors in total, and 75% of these anchors

are tiled on P2.
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3.1.2 Loss Function

The loss function is the combination of multiple loss functions to satisfy the

multi-task objective, which is defined as:

L = L1(pi, p
∗
i ) + λ1p

∗
iL2(ti, t

∗
i ) + λ2p

∗
iL3(li, l

∗
i )

L1 applied softmax loss to monitor the face score (aka. face class probability).

L2 is adopted here to supervise the training of face bounding box coordinates,

where ti = {tx, ty, tw, th}i and t∗i = {t∗x, t∗y, t∗w, t∗h}i represent the coordinates of the

predicted box and ground-truth box associated with the positive anchor.

L3 helps the training of five landmarks, where li = {lx1, ly1, ..., lx5, ly5}i and l∗i =

{l∗x1, l∗y1, ..., l∗x5, l∗y5}i represent the predicted five facial landmarks and ground-truth

associated with the positive anchor.

The bounding box coordinates and landmarks are ignored in negative anchors,

therefore, if the face score is less than 0.5, the L2 and L3 are zero in this anchor.

3.1.3 Improvements

RetinaFace provides different backbones for different usages, mobilenet-0.25 back-

bone model is designed for highly efficient face localization. With the open-source

work [2], I reproduced the result in the paper, but the inference speed is not satis-

factory in the mobile device. It cost about 50ms for 640 × 640 input image, which

considers as a high latency in real-time video communication.

Decreased the size of input image: To decrease detection costs dramati-

cally, I first rescaled input image to 320 × 320, and it will bring about 75% speed

improvement theoretically. However, the inference time was decreased only 50%.

Without the time-consuming analysis of each layer, there are difficulties to find the

large time-consuming layers and the time-consuming relationship between these lay-

ers and resolution, which means if future optimization is required in iOS, the detailed

time-consuming analysis will be needed.

Removed stride-8 branch: RetinaFace-MobileNet-0.25 has three detection

branches in total: stride-32, stride-16, and stride-8. Stride-8 branch is designed to

detect the tiny faces in face detection challenge. Because the objective of this task

is to build a face-related model that can meet the prerequisites of the objective, I

removed the stride-8 branch in inference. It is worth mentioning that the removal of

this branch may increase the training difficulty.
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After applying the above methods, I reduced the inference time to 16ms/frame.

Nevertheless, the modified model’s accuracy loss is mainly due to the large drop of

input resolution. Therefore, I retrained the model with 320 × 320 input image and

tuned the parameters of anchor settings so that the stride-8 can be safely removed.

3.2 Facial Landmark

I chose PFLD [5] as the base model for the reason of efficiency and performance.

The main objective of PFLD is to build a real-time facial landmark detection model

and the model performances well in the 300-w dataset. Just as in the last section, I will

introduce the key design points of PFLD to provide essential background information

in the following improvement works.

3.2.1 Model Architecture

Backbone Network: The overall structure is compact, and the heatmap or

global-to local refinement is unused due to the request of real-time inference. Mo-

bilenet backbone is adopted in PFLD, and the fully connected layer is applied in the

last to output landmarks. The auxiliary network is added to predict the rotation

information, which helps the convergence of training and makes the landmark local-

ization stable and robust. It is worth mentioning that the auxiliary network applies

only in training, and it is removed in inference to reduce computation costs. The

model architecture is shown in Figure 3.

Auxiliary network: Due to the large scale of the difference between prediction

points and ground truth, processed training loss indiscriminately makes the training

process hard to convergent and impairs the robustness. The auxiliary network in

PFLD ameliorates this issue.

For every input data, the auxiliary network predicts 3D Euler angles that are

pitch, yaw, and roll, and the ground truth is computed from ground truth landmarks.

For accuracy, the angles may not be exact for each face, but they are sufficient to

classify datasets. It should be noticed that the input of the auxiliary net is the 4-th

block of the main net, not the input image.

3.2.2 Loss Function

The loss function is the novel part of PFLD, and the loss function can be divided

into three parts based on the model structure. The first part is used to compute the
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Figure 3: PFLD Model Architecture

L2 loss between the prediction and ground truth. The second part designs to monitor

the loss of predicted Euler angles and the last one penalizes each class differently to

ameliorate the sample imbalance. The loss function is defined as:

L :=
1

M

M∑
m=1

N∑
n=1

(
C∑
c=1

ωc
n

k∑
k=1

(1− cosθkn)||dmn ||22

)
In which, θ1, θ2, and θ3 (K=3) represent the angles of deviation between the

ground-truth and estimated yaw, pitch, and roll angles. The weighting parameter ωc
n

is adjusted according to the fraction of samples belonging to class c (this work simply

adopts the reciprocal of fraction).

Without θ and ω, the loss function is a simple L2 loss.

3.2.3 Improvements

PFLD is not an open-source project, I found an excellent third-party [8] open-

source work in GitHub that reproduce the most of implementation details. How-

ever, the undisclosed details bring a lot of troubles in implementation. Thus the

improvements have to be made to utilize this project, and I will introduce the major

improvements in the following section.

Rotation without cropping: Prepossessing of input plays important role in

model training, however, this part has not been disclosed in the paper in detail. And

I found the original rotation method in this work [8] that is rotation with cropping
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impairs the accuracy significantly. This is understandable because this operation

brings loss of image information at the beginning and undermines the performance in

the common set. Therefore, I replace this operation with rotation without cropping.

Wing loss function: I realized that the training process convergent very slow

even though the auxiliary net is adopted. This is because the design of the loss

function focuses more on the minority of hard samples, which impeding the overall

training. After a literature review of face-related loss functions, I found wing loss [3]

helps model with convergent. The wing loss is defined as:

wing(x) =

ω ln(1 + |x|/ε), if |x| < ω

|x| − C, otherwise

x is the absolute difference between prediction and ground truth, total loss grows

when x < ω, vice-versa. So the large scale of difficulty on each facial part landmarks

will not affects the training significantly.

Besides, the eyebrow and contour have lower accuracy after a detailed analysis

of facial parts. To improve the accuracy of these parts, I tuned the loss weight to

1.15 : 1

Integration the integrated facial landmark detection model should include the

face detection model firstly, which means the output of the face detection model is the

input of the landmark detection model. To better achieve this, I augmented the input

dataset of PFLD-v2∗ with the prepossessed dataset of the output of RM-0.25-v2-w8∗

and retrained the model.

4 Evaluation

4.1 Face Detection

For detection, I applied the standard evaluation metric of average precision(AP)

when IoU = 0.5 on the test dataset, and feed the output file of predicted bounding

box into the evaluation script to get AP based on the requirements of WIDER FACE

[16].

WIDER FACE divides the test dataset into Easy, Medium, and Hard subsets

based on the detection difficulty. However, this separation helps a little on my objec-

tive because face beauty and face-focused super-resolution rarely consider tiny faces,

extreme occlusions, and lighting. Therefore, I reorganized the dataset into Small,
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Method Smallface Mediumface Largeface

Average Precision (AP)

RM-0.25 0.681 0.908 0.962

RM-0.25-w8 0.355 0.904 0.973

RM-0.25∗ 0.378 0.838 0.956

RM-0.25-w8∗ 0.014 0.477 0.964

RM-0.25-v2∗ 0.500 0.828 0.950

RM-0.25-v2-w8∗ 0.254 0.836 0.964

Table 2: Comparison of modified models. The row marked with * displays the result

using 320×320 input size. v2 is the modified model, and w8 means the model without

stride-8 branch

Medium, and Large subsets based on the size ratio of the faces to the whole picture

and filtered out 39% of the test dataset.

The truncation of stride-8 affects a little on Large and Medium subsets, but the

Small one is based on Table 1. Therefore, I can safely remove this stride to decrease

inference latency. Besides, down-sampling input size and tunning anchor settings

without changing modifying strategy and datasets affect Medium subsets’ accuracy

to some extent, due to lowering input size brings difficulty to training and impairs

convergence. The possible solution will be discussed in future work.

4.2 Facial Landmark

The overall accuracy has improved a lot from the [8], but some challenging facial

parts like contour and eyebrows still has much room for improvement. This is because

these are outer parts and are easily affected by the detection bounding box. The

possible solution will be discussed in future work.

Method Common Challenge Full

Inter-ocular Normalization (ION)

PFLD∗ 5.18 8.78 5.85

PFLD-v2∗ 4.19 7.68 4.87

Table 3: Comparison of modified models. The row marked with * displays the result

using third-party reproduction. v2 is the modified model
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Method Contour Eyebrow Eyes Nose Mouth

Inter-ocular Normalization (ION)

PFLD∗ 8.46 5.56 4.33 5.40 5.01

PFLD-v2∗ 7.26 5.33 3.24 3.54 4.20

Table 4: Comparison of modified models in facial parts. The row marked with *

displays the result using third-party reproduction. v2 is the modified model

Figure 4: Visual Improvement of PFLD-v2*. Green points denote ground truth, red

points denote prediction.

5 Application

To test the performance of the integrated model, I developed an iOS demo with

the CoreML mobile inference framework. However, I encountered some tricky issues

during model conversion. The switch [12] and merge [13] ops in TensorFlow batch-

norm layer are not well supported in CoreML, which means we cannot solve this issue

by modifying conversion tools. According to the definition, the two ops are ignored

in inference, therefore, I can safely skip these two layers by modifying the inputs and
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outputs of the related ops.

Figure 5: iOS Demo Flowchart

6 Future Work

Improvements on the mediumface subset: Because lowering input size

brings difficulty to training and impairs convergence, adjust anchor settings based on

the downsampling ratio are less helpful. To enhance the accuracy of the mediumface

subset, I need to reclassify the training dataset and filter out the smallface subset.

Improvements on eyebrows and contour localization: The eyebrows and

contour are the outer parts of the face and are easily affected by the detection bound-

ing box. Therefore, the possible solutions are: (1) add boundary heatmap [15] to

assist outer parts regression (2) design an experiment to find effective bounding box

settings.

A new evaluation metric: Finding an effective bounding box setting needs a

more comprehensive metric to evaluate the location accuracy of the predicted bound-

ing box. Therefore, a new evaluation metric of localization accuracy will be needed.

7 Conclusion

I demonstrated an integrated face detection and landmarks model that aims for

face beauty and face-focused super-resolution in this work. The proposed model is

modified from the two excellent open-source works by extensive literature review and

experiments that achieve high efficiency and accuracy. Moreover, the proposed model
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is the base model of face-focused video enhancement, like face beauty, and works to

improve real-time video communication efficiency if we applied for this work in face-

focused super-resolution. Finally, I mentioned a few improving thoughts in future

work.
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